Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
2.
ESC Heart Fail ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616546

RESUMEN

AIMS: Hyperactivity of Ca2+/calmodulin-dependent protein kinase II (CaMKII) has emerged as a central cause of pathologic remodelling in heart failure. It has been suggested that CaMKII-induced hyperphosphorylation of the ryanodine receptor 2 (RyR2) and consequently increased diastolic Ca2+ leak from the sarcoplasmic reticulum (SR) is a crucial mechanism by which increased CaMKII activity leads to contractile dysfunction. We aim to evaluate the relevance of CaMKII-dependent RyR2 phosphorylation for CaMKII-induced heart failure development in vivo. METHODS AND RESULTS: We crossbred CaMKIIδC overexpressing [transgenic (TG)] mice with RyR2-S2814A knock-in mice that are resistant to CaMKII-dependent RyR2 phosphorylation. Ca2+-spark measurements on isolated ventricular myocytes confirmed the severe diastolic SR Ca2+ leak previously reported in CaMKIIδC TG [4.65 ± 0.73 mF/F0 vs. 1.88 ± 0.30 mF/F0 in wild type (WT)]. Crossing in the S2814A mutation completely prevented SR Ca2+-leak induction in the CaMKIIδC TG, both regarding Ca2+-spark size and frequency, demonstrating that the CaMKIIδC-induced SR Ca2+ leak entirely depends on the CaMKII-specific RyR2-S2814 phosphorylation. Yet, the RyR2-S2814A mutation did not affect the massive contractile dysfunction (ejection fraction = 12.17 ± 2.05% vs. 45.15 ± 3.46% in WT), cardiac hypertrophy (heart weight/tibia length = 24.84 ± 3.00 vs. 9.81 ± 0.50 mg/mm in WT), or severe premature mortality (median survival of 12 weeks) associated with cardiac CaMKIIδC overexpression. In the face of a prevented SR Ca2+ leak, the phosphorylation status of other critical CaMKII downstream targets that can drive heart failure, including transcriptional regulator histone deacetylase 4, as well as markers of pathological gene expression including Xirp2, Il6, and Col1a1, was equally increased in hearts from CaMKIIδC TG on a RyR WT and S2814A background. CONCLUSIONS: S2814 phosphoresistance of RyR2 prevents the CaMKII-dependent SR Ca2+ leak induction but does not prevent the cardiomyopathic phenotype caused by enhanced CaMKIIδC activity. Our data indicate that additional mechanisms-independent of SR Ca2+ leak-are critical for the maladaptive effects of chronically increased CaMKIIδC activity with respect to heart failure.

3.
Genome Med ; 16(1): 53, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570875

RESUMEN

BACKGROUND: NODAL signaling plays a critical role in embryonic patterning and heart development in vertebrates. Genetic variants resulting in perturbations of the TGF-ß/NODAL signaling pathway have reproducibly been shown to cause laterality defects in humans. To further explore this association and improve genetic diagnosis, the study aims to identify and characterize a broader range of NODAL variants in a large number of individuals with laterality defects. METHODS: We re-analyzed a cohort of 321 proband-only exomes of individuals with clinically diagnosed laterality congenital heart disease (CHD) using family-based, rare variant genomic analyses. To this cohort we added 12 affected subjects with known NODAL variants and CHD from institutional research and clinical cohorts to investigate an allelic series. For those with candidate contributory variants, variant allele confirmation and segregation analysis were studied by Sanger sequencing in available family members. Array comparative genomic hybridization and droplet digital PCR were utilized for copy number variants (CNV) validation and characterization. We performed Human Phenotype Ontology (HPO)-based quantitative phenotypic analyses to dissect allele-specific phenotypic differences. RESULTS: Missense, nonsense, splice site, indels, and/or structural variants of NODAL were identified as potential causes of heterotaxy and other laterality defects in 33 CHD cases. We describe a recurrent complex indel variant for which the nucleic acid secondary structure predictions implicate secondary structure mutagenesis as a possible mechanism for formation. We identified two CNV deletion alleles spanning NODAL in two unrelated CHD cases. Furthermore, 17 CHD individuals were found (16/17 with known Hispanic ancestry) to have the c.778G > A:p.G260R NODAL missense variant which we propose reclassification from variant of uncertain significance (VUS) to likely pathogenic. Quantitative HPO-based analyses of the observed clinical phenotype for all cases with p.G260R variation, including heterozygous, homozygous, and compound heterozygous cases, reveal clustering of individuals with biallelic variation. This finding provides evidence for a genotypic-phenotypic correlation and an allele-specific gene dosage model. CONCLUSION: Our data further support a role for rare deleterious variants in NODAL as a cause for sporadic human laterality defects, expand the repertoire of observed anatomical complexity of potential cardiovascular anomalies, and implicate an allele specific gene dosage model.


Asunto(s)
Cardiopatías Congénitas , Síndrome de Heterotaxia , Transposición de los Grandes Vasos , Animales , Humanos , Arterias , Hibridación Genómica Comparativa , Cardiopatías Congénitas/genética , Síndrome de Heterotaxia/genética , Fenotipo
4.
J Mol Cell Cardiol ; 190: 1-12, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514002

RESUMEN

BACKGROUND: Overexpression of the CREM (cAMP response element-binding modulator) isoform CREM-IbΔC-X in transgenic mice (CREM-Tg) causes the age-dependent development of spontaneous AF. PURPOSE: To identify key proteome signatures and biological processes accompanying the development of persistent AF through integrated proteomics and bioinformatics analysis. METHODS: Atrial tissue samples from three CREM-Tg mice and three wild-type littermates were subjected to unbiased mass spectrometry-based quantitative proteomics, differential expression and pathway enrichment analysis, and protein-protein interaction (PPI) network analysis. RESULTS: A total of 98 differentially expressed proteins were identified. Gene ontology analysis revealed enrichment for biological processes regulating actin cytoskeleton organization and extracellular matrix (ECM) dynamics. Changes in ITGAV, FBLN5, and LCP1 were identified as being relevant to atrial fibrosis and structural based on expression changes, co-expression patterns, and PPI network analysis. Comparative analysis with previously published datasets revealed a shift in protein expression patterns from ion-channel and metabolic regulators in young CREM-Tg mice to profibrotic remodeling factors in older CREM-Tg mice. Furthermore, older CREM-Tg mice exhibited protein expression patterns reminiscent of those seen in humans with persistent AF. CONCLUSIONS: This study uncovered distinct temporal changes in atrial protein expression patterns with age in CREM-Tg mice consistent with the progressive evolution of AF. Future studies into the role of the key differentially abundant proteins identified in this study in AF progression may open new therapeutic avenues to control atrial fibrosis and substrate development in AF.


Asunto(s)
Fibrilación Atrial , Modulador del Elemento de Respuesta al AMP Cíclico , Fibrosis , Atrios Cardíacos , Ratones Transgénicos , Proteómica , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/genética , Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Modulador del Elemento de Respuesta al AMP Cíclico/genética , Proteómica/métodos , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Ratones , Regulación de la Expresión Génica , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Matriz Extracelular/metabolismo , Masculino
5.
J Cardiovasc Aging ; 4(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38464671

RESUMEN

Introduction: Heterozygous autosomal-dominant single nucleotide variants in RYR2 account for 60% of cases of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia disorder associated with high mortality rates. CRISPR/Cas9-mediated genome editing is a promising therapeutic approach that can permanently cure the disease by removing the mutant RYR2 allele. However, the safety and long-term efficacy of this strategy have not been established in a relevant disease model. Aim: The purpose of this study was to assess whether adeno-associated virus type-9 (AAV9)-mediated somatic genome editing could prevent ventricular arrhythmias by removal of the mutant allele in mice that are heterozygous for Ryr2 variant p.Arg176Gln (R176Q/+). Methods and Results: Guide RNA and SaCas9 were delivered using AAV9 vectors injected subcutaneously in 10-day-old mice. At 6 weeks after injection, R176Q/+ mice had a 100% reduction in ventricular arrhythmias compared to controls. When aged to 12 months, injected R176Q/+ mice maintained a 100% reduction in arrhythmia induction. Deep RNA sequencing revealed the formation of insertions/deletions at the target site with minimal off-target editing on the wild-type allele. Consequently, CRISPR/SaCas9 editing resulted in a 45% reduction of total Ryr2 mRNA and a 38% reduction in RyR2 protein. Genome editing was well tolerated based on serial echocardiography, revealing unaltered cardiac function and structure up to 12 months after AAV9 injection. Conclusion: Taken together, AAV9-mediated CRISPR/Cas9 genome editing could efficiently disrupt the mutant Ryr2 allele, preventing lethal arrhythmias while preserving normal cardiac function in the R176Q/+ mouse model of CPVT.

6.
Circ Res ; 134(8): 1006-1022, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38506047

RESUMEN

BACKGROUND: In heart failure, signaling downstream the ß2-adrenergic receptor is critical. Sympathetic stimulation of ß2-adrenergic receptor alters cAMP (cyclic adenosine 3',5'-monophosphate) and triggers PKA (protein kinase A)-dependent phosphorylation of proteins that regulate cardiac function. cAMP levels are regulated in part by PDEs (phosphodiesterases). Several AKAPs (A kinase anchoring proteins) regulate cardiac function and are proposed as targets for precise pharmacology. AKAP12 is expressed in the heart and has been reported to directly bind ß2-adrenergic receptor, PKA, and PDE4D. However, its roles in cardiac function are unclear. METHODS: cAMP accumulation in real time downstream of the ß2-adrenergic receptor was detected for 60 minutes in live cells using the luciferase-based biosensor (GloSensor) in AC16 human-derived cardiomyocyte cell lines overexpressing AKAP12 versus controls. Cardiomyocyte intracellular calcium and contractility were studied in adult primary cardiomyocytes from male and female mice overexpressing cardiac AKAP12 (AKAP12OX) and wild-type littermates post acute treatment with 100-nM isoproterenol (ISO). Systolic cardiac function was assessed in mice after 14 days of subcutaneous ISO administration (60 mg/kg per day). AKAP12 gene and protein expression levels were evaluated in left ventricular samples from patients with end-stage heart failure. RESULTS: AKAP12 upregulation significantly reduced total intracellular cAMP levels in AC16 cells through PDE8. Adult primary cardiomyocytes from AKAP12OX mice had significantly reduced contractility and impaired calcium handling in response to ISO, which was reversed in the presence of the selective PDE8 inhibitor (PF-04957325). AKAP12OX mice had deteriorated systolic cardiac function and enlarged left ventricles. Patients with end-stage heart failure had upregulated gene and protein levels of AKAP12. CONCLUSIONS: AKAP12 upregulation in cardiac tissue is associated with accelerated cardiac dysfunction through the AKAP12-PDE8 axis.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas , Cardiopatías , Receptores Adrenérgicos , Animales , Femenino , Humanos , Masculino , Ratones , 3',5'-AMP Cíclico Fosfodiesterasas/genética , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Cardiopatías/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos/metabolismo , Regulación hacia Arriba
7.
Curr Protoc ; 4(2): e994, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38372479

RESUMEN

Cardiac arrhythmias are a common cardiac condition that might lead to fatal outcomes. A better understanding of the molecular and cellular basis of arrhythmia mechanisms is necessary for the development of better treatment modalities. To aid these efforts, various mouse models have been developed for studying cardiac arrhythmias. Both genetic and surgical mouse models are commonly used to assess the incidence and mechanisms of arrhythmias. Since spontaneous arrhythmias are uncommon in healthy young mice, intracardiac programmed electrical stimulation (PES) can be performed to assess the susceptibility to pacing-induced arrhythmias and uncover the possible presence of a proarrhythmogenic substrate. This procedure is performed by positioning an octopolar catheter inside the right atrium and ventricle of the heart through the right jugular vein. PES can provide insights into atrial and ventricular electrical activity and reveal whether atrial and/or ventricular arrhythmias are present or can be induced. Here, we explain detailed procedures used to perform this technique, possible troubleshooting scenarios, and methods to interpret the results obtained. © 2024 Wiley Periodicals LLC. Basic Protocol: Programmed electrical stimulation in mice.


Asunto(s)
Arritmias Cardíacas , Técnicas Electrofisiológicas Cardíacas , Ratones , Animales , Arritmias Cardíacas/terapia , Ventrículos Cardíacos , Atrios Cardíacos , Estimulación Eléctrica
8.
J Gen Physiol ; 156(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385988

RESUMEN

We have previously demonstrated that type II ryanodine receptors (RyR2) tetramers can be rapidly rearranged in response to a phosphorylation cocktail. The cocktail modified downstream targets indiscriminately, making it impossible to determine whether phosphorylation of RyR2 was an essential element of the response. Here, we used the ß-agonist isoproterenol and mice homozygous for one of the following clinically relevant mutations: S2030A, S2808A, S2814A, or S2814D. We measured the length of the dyad using transmission electron microscopy (TEM) and directly visualized RyR2 distribution using dual-tilt electron tomography. We found that the S2814D mutation, by itself, significantly expanded the dyad and reorganized the tetramers, suggesting a direct link between the phosphorylation state of the tetramer and its microarchitecture. S2808A and S2814A mutant mice, as well as wild types, had significant expansions of their dyads in response to isoproterenol, while S2030A mutants did not. In agreement with functional data from these mutants, S2030 and S2808 were necessary for a complete ß-adrenergic response, unlike S2814 mutants. Additionally, all mutants had unique effects on the organization of their tetramer arrays. Lastly, the correlation of structural with functional changes suggests that tetramer-tetramer contacts play an important functional role. We thus conclude that both the size of the dyad and the arrangement of the tetramers are linked to the state of the channel tetramer and can be dynamically altered by a ß-adrenergic receptor agonist.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Animales , Ratones , Isoproterenol/farmacología , Mutación , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/química
9.
JACC Heart Fail ; 12(4): 605-615, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38206235

RESUMEN

Atrial fibrillation (AF) is associated with an increased risk of new-onset ventricular contractile dysfunction, termed arrhythmia-induced cardiomyopathy (AIC). Although cardioembolic stroke remains the most feared and widely studied complication of AF, AIC is also a clinically important consequence of AF that portends significant morbidity and mortality to patients with AF. Current treatments are aimed at restoring sinus rhythm through catheter ablation and rate and rhythm control, but these treatments do not target the underlying molecular mechanisms driving the progression from AF to AIC. Here, we describe the clinical features of the various AIC subtypes, discuss the pathophysiologic mechanisms driving the progression from AF to AIC, and review the evidence surrounding current treatment options. In this review, we aim to identify key knowledge gaps that will enable the development of more effective AIC therapies that target cellular and molecular mechanisms.


Asunto(s)
Fibrilación Atrial , Cardiomiopatías , Ablación por Catéter , Insuficiencia Cardíaca , Humanos , Fibrilación Atrial/terapia , Fibrilación Atrial/tratamiento farmacológico , Insuficiencia Cardíaca/complicaciones , Cardiomiopatías/etiología , Cardiomiopatías/terapia , Taquicardia/complicaciones , Taquicardia/cirugía , Ablación por Catéter/efectos adversos , Resultado del Tratamiento
10.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260363

RESUMEN

Background: Overexpression of the CREM (cAMP response element-binding modulator) isoform CREM-IbΔC-X in transgenic mice (CREM-Tg) causes the age-dependent development of spontaneous AF. Purpose: To identify key proteome signatures and biological processes accompanying the development of persistent AF through integrated proteomics and bioinformatics analysis. Methods: Atrial tissue samples from three CREM-Tg mice and three wild-type littermates were subjected to unbiased mass spectrometry-based quantitative proteomics, differential expression and pathway enrichment analysis, and protein-protein interaction (PPI) network analysis. Results: A total of 98 differentially expressed proteins were identified. Gene ontology analysis revealed enrichment for biological processes regulating actin cytoskeleton organization and extracellular matrix (ECM) dynamics. Changes in ITGAV, FBLN5, and LCP1 were identified as being relevant to atrial fibrosis and remodeling based on expression changes, co-expression patterns, and PPI network analysis. Comparative analysis with previously published datasets revealed a shift in protein expression patterns from ion-channel and metabolic regulators in young CREM-Tg mice to profibrotic remodeling factors in older CREM-Tg mice. Furthermore, older CREM-Tg mice exhibited protein expression patterns that resembled those of humans with persistent AF. Conclusions: This study uncovered distinct temporal changes in atrial protein expression patterns with age in CREM-Tg mice consistent with the progressive evolution of AF. Future studies into the role of the key differentially abundant proteins identified in this study in AF progression may open new therapeutic avenues to control atrial fibrosis and substrate development in AF.

11.
Circ Heart Fail ; 16(12): e010351, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38113297

RESUMEN

BACKGROUND: PRDM16 plays a role in myocardial development through TGF-ß (transforming growth factor-beta) signaling. Recent evidence suggests that loss of PRDM16 expression is associated with cardiomyopathy development in mice, although its role in human cardiomyopathy development is unclear. This study aims to determine the impact of PRDM16 loss-of-function variants on cardiomyopathy in humans. METHODS: Individuals with PRDM16 variants were identified and consented. Induced pluripotent stem cell-derived cardiomyocytes were generated from a proband hosting a Q187X nonsense variant as an in vitro model and underwent proliferative and transcriptional analyses. CRISPR (clustered regularly interspaced short palindromic repeats)-mediated knock-in mouse model hosting the Prdm16Q187X allele was generated and subjected to ECG, histological, and transcriptional analysis. RESULTS: We report 2 probands with loss-of-function PRDM16 variants and pediatric left ventricular noncompaction cardiomyopathy. One proband hosts a PRDM16-Q187X variant with left ventricular noncompaction cardiomyopathy and demonstrated infant-onset heart failure, which was selected for further study. Induced pluripotent stem cell-derived cardiomyocytes prepared from the PRDM16-Q187X proband demonstrated a statistically significant impairment in myocyte proliferation and increased apoptosis associated with transcriptional dysregulation of genes implicated in cardiac maturation, including TGF-ß-associated transcripts. Homozygous Prdm16Q187X/Q187X mice demonstrated an underdeveloped compact myocardium and were embryonically lethal. Heterozygous Prdm16Q187X/WT mice demonstrated significantly smaller ventricular dimensions, heightened fibrosis, and age-dependent loss of TGF-ß expression. Mechanistic studies were undertaken in H9c2 cardiomyoblasts to show that PRDM16 binds TGFB3 promoter and represses its transcription. CONCLUSIONS: Novel loss-of-function PRDM16 variant impairs myocardial development resulting in noncompaction cardiomyopathy in humans and mice associated with altered TGF-ß signaling.


Asunto(s)
Cardiomiopatías , Proteínas de Unión al ADN , Insuficiencia Cardíaca , Transducción de Señal , Factor de Crecimiento Transformador beta , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Insuficiencia Cardíaca/genética , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/patología , Humanos , Masculino , Femenino , Animales , Ratones , Técnicas de Sustitución del Gen , Recién Nacido , Preescolar , Proliferación Celular/genética , Apoptosis/genética , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal/genética , Células Cultivadas
12.
iScience ; 26(11): 108258, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026174

RESUMEN

Alternative splicing is a prevalent gene-regulatory mechanism, with over 95% of multi-exon human genes estimated to be alternatively spliced. Here, we describe a tissue-specific, developmentally regulated, highly conserved, and disease-associated alternative splicing event in exon 7 of the eyes absent homolog 3 (Eya3) gene. We discovered that EYA3 expression is vital to the proliferation and differentiation of myoblasts. Genome-wide transcriptomic analysis and mass spectrometry-based proteomic studies identified SIX homeobox 4 (SIX4) and zinc finger and BTB-domain containing 1 (ZBTB1), as major transcription factors that interact with EYA3 to dictate gene expression. EYA3 isoforms differentially regulate transcription, indicating that splicing aids in temporal control of gene expression during muscle cell differentiation. Finally, we identified RNA-binding fox-1 homolog 2 (RBFOX2) as the main regulator of EYA3 splicing. Together, our findings illustrate the interplay between alternative splicing and transcription during myogenesis.

13.
Circ Res ; 133(9): 758-771, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37737016

RESUMEN

BACKGROUND: Atrial fibrillation (AF)-the most common sustained cardiac arrhythmia-increases thromboembolic stroke risk 5-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C (protein phosphatase 1 regulatory subunit 12C)-the PP1 (protein phosphatase 1) regulatory subunit targeting MLC2a (atrial myosin light chain 2)-causes hypophosphorylation of MLC2a and results in atrial hypocontractility. METHODS: Right atrial appendage tissues were isolated from human patients with AF versus sinus rhythm controls. Western blots, coimmunoprecipitation, and phosphorylation studies were performed to examine how the PP1c (PP1 catalytic subunit)-PPP1R12C interaction causes MLC2a dephosphorylation. In vitro studies of pharmacological MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) inhibitor (BDP5290) in atrial HL-1 cells were performed to evaluate PP1 holoenzyme activity on MLC2a. Cardiac-specific lentiviral PPP1R12C overexpression was performed in mice to evaluate atrial remodeling with atrial cell shortening assays, echocardiography, and AF inducibility with electrophysiology studies. RESULTS: In human patients with AF, PPP1R12C expression was increased 2-fold versus sinus rhythm controls (P=2.0×10-2; n=12 and 12 in each group) with >40% reduction in MLC2a phosphorylation (P=1.4×10-6; n=12 and 12 in each group). PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF (P=2.9×10-2 and 6.7×10-3, respectively; n=8 and 8 in each group). In vitro studies utilizing drug BDP5290, which inhibits T560-PPP1R12C phosphorylation, demonstrated increased PPP1R12C binding with both PP1c and MLC2a and dephosphorylation of MLC2a. Mice treated with lentiviral PPP1R12C vector demonstrated a 150% increase in left atrial size versus controls (P=5.0×10-6; n=12, 8, and 12), with reduced atrial strain and atrial ejection fraction. Pacing-induced AF in mice treated with lentiviral PPP1R12C vector was significantly higher than in controls (P=1.8×10-2 and 4.1×10-2, respectively; n=6, 6, and 5). CONCLUSIONS: Patients with AF exhibit increased levels of PPP1R12C protein compared with controls. PPP1R12C overexpression in mice increases PP1c targeting to MLC2a and causes MLC2a dephosphorylation, which reduces atrial contractility and increases AF inducibility. These findings suggest that PP1 regulation of sarcomere function at MLC2a is a key determinant of atrial contractility in AF.


Asunto(s)
Fibrilación Atrial , Proteína Fosfatasa 1 , Accidente Cerebrovascular , Animales , Humanos , Ratones , Fibrilación Atrial/metabolismo , Atrios Cardíacos/metabolismo , Fosforilación , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo
14.
Commun Biol ; 6(1): 942, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709832

RESUMEN

Here we show that striated muscle preferentially expressed protein kinase α (Spegα) maintains cardiac function in hearts with Spegß deficiency. Speg is required for stability of excitation-contraction coupling (ECC) complexes and interacts with esterase D (Esd), Cardiomyopathy-Associated Protein 5 (Cmya5), and Fibronectin Type III and SPRY Domain Containing 2 (Fsd2) in cardiac and skeletal muscle. Mice with a sequence encoding a V5/HA tag inserted into the first exon of the Speg gene (HA-Speg mice) display a >90% decrease in Spegß but Spegα is expressed at ~50% of normal levels. Mice deficient in both Spegα and Speg ß (Speg KO mice) develop a severe dilated cardiomyopathy and muscle weakness and atrophy, but HA-Speg mice display mild muscle weakness with no cardiac involvement. Spegα in HA-Speg mice suppresses Ca2+ leak, proteolytic cleavage of Jph2, and disruption of transverse tubules. Despite it's low levels, HA-Spegß immunoprecipitation identified Esd, Cmya5 and Fsd2 as Spegß binding partners that localize to triads and dyads to stabilize ECC complexes. This study suggests that Spegα and Spegß display functional redundancy, identifies Esd, Cmya5 and Fsd2 as components of both cardiac dyads and skeletal muscle triads and lays the groundwork for the identification of new therapeutic targets for centronuclear myopathy.


Asunto(s)
Cardiomiopatía Dilatada , Animales , Ratones , Exones , Corazón , Inmunoprecipitación , Debilidad Muscular , Proteínas Musculares , Quinasa de Cadena Ligera de Miosina , Péptidos y Proteínas de Señalización Intracelular
15.
J Cardiovasc Aging ; 3(3)2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37538440

RESUMEN

Introduction: Heart failure (HF) is the leading cause of death worldwide. Most large and small animal disease models of HF are based on surgical procedures. A common surgical technique to induce HF is transverse aortic constriction (TAC), which induces pressure overload. The conventional TAC (cTAC) procedure is a highly invasive surgery that is associated with severe inflammation and excessive perioperative deaths. Aim: To establish an improved, minimally invasive TAC (mTAC) procedure that does not require thoracotomy. Methods and results: Following anesthesia, mice were intubated, and a small incision was made at the neck and chest. After cutting the sternum about 4 mm, the aortic arch was approached without opening the pleural cavity. A suture was placed between the brachiocephalic artery and the left common carotid artery. This model was associated with low perioperative mortality and a highly reproducible constriction evidenced by an increased right-to-left carotid blood flow velocity ratio in mTAC mice (5.9 ± 0.2) vs. sham controls (1.2 ± 0.1; P < 0.001). mTAC mice exhibited progressive cardiac remodeling during the 8 weeks post-TAC, resulting in reduced left ventricular (LV) contractility, increased LV end-systolic diameter, left atrial enlargement and diastolic dysfunction, and an increased heart weight to tibia length ratio (mTAC: 15.0 ± 0.8 vs. sham: 10.1 ± 0.6; P < 0.01). Conclusion: Our data show that the mTAC procedure yields a highly reproducible phenotype consisting of LV contractile dysfunction and enlargement, combined with left atrial enlargement and diastolic dysfunction. Potential impact of the findings: This model may be used to test the molecular mechanisms underlying atrial remodeling associated with HF development or to evaluate therapeutic strategies to treat these conditions.

16.
Cells ; 12(10)2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37408197

RESUMEN

This article reviews progress in the field of cardiac genome editing, in particular, its potential utility in treating cardiac arrhythmias. First, we discuss genome editing methods by which DNA can be disrupted, inserted, deleted, or corrected in cardiomyocytes. Second, we provide an overview of in vivo genome editing in preclinical models of heritable and acquired arrhythmias. Third, we discuss recent advancements in cardiac gene transfer, including delivery methods, gene expression optimization, and potential adverse effects associated with therapeutic somatic genome editing. While genome editing for cardiac arrhythmias is still in its infancy, this approach holds great promise, especially for inherited arrhythmia syndromes with a defined genetic defect.


Asunto(s)
Edición Génica , Taquicardia Ventricular , Humanos , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/terapia , Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Arritmias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo
17.
bioRxiv ; 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37292875

RESUMEN

We have previously demonstrated that type II ryanodine receptors (RyR2) tetramers can be rapidly rearranged in response to a phosphorylation cocktail. The cocktail modified downstream targets indiscriminately making it impossible to determine whether phosphorylation of RyR2 was an essential element of the response. We therefore used the ß-agonist isoproterenol and mice with one of the homozygous mutations, S2030A +/+ , S2808A +/+ , S2814A +/+ , or S2814D +/+ , to address this question and to elucidate the role of these clinically relevant mutations. We measured the length of the dyad using transmission electron microscopy (TEM) and directly visualized RyR2 distribution using dual-tilt electron tomography. We found that: 1) The S2814D mutation, by itself, significantly expanded the dyad and reorganized the tetramers suggesting a direct link between the phosphorylation state of the tetramer and the microarchitecture. 2) All of the wild-type, as well as the S2808A and S2814A mice, had significant expansions of their dyads in response to ISO, while S2030A did not. 3) In agreement with functional data from the same mutants, S2030 and S2808 were necessary for a complete ß-adrenergic response, whereas S2814 was not. 4) All the mutated residues had unique effects on the organization of their tetramer arrays. 5) The correlation of structure with function suggests that tetramer-tetramer contacts play an important functional role. We conclude that both the size of the dyad and the arrangement of the tetramers are linked to the state of the channel tetramer and can be dynamically altered by a ß-adrenergic receptor agonist. Summary: Analysis of RyR2 mutants suggests a direct link between the phosphorylation state of the channel tetramer and the microarchitecture of the dyad. All phosphorylation site mutations produced significant and unique effects on the structure of the dyad and its response to isoproterenol.

18.
Sci Transl Med ; 15(701): eabq7839, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37343080

RESUMEN

Ca2+/calmodulin-dependent protein kinase II (CaMKII) hyperactivity causes cardiac arrhythmias, a major source of morbidity and mortality worldwide. Despite proven benefits of CaMKII inhibition in numerous preclinical models of heart disease, translation of CaMKII antagonists into humans has been stymied by low potency, toxicity, and an enduring concern for adverse effects on cognition due to an established role of CaMKII in learning and memory. To address these challenges, we asked whether any clinically approved drugs, developed for other purposes, were potent CaMKII inhibitors. For this, we engineered an improved fluorescent reporter, CaMKAR (CaMKII activity reporter), which features superior sensitivity, kinetics, and tractability for high-throughput screening. Using this tool, we carried out a drug repurposing screen (4475 compounds in clinical use) in human cells expressing constitutively active CaMKII. This yielded five previously unrecognized CaMKII inhibitors with clinically relevant potency: ruxolitinib, baricitinib, silmitasertib, crenolanib, and abemaciclib. We found that ruxolitinib, an orally bioavailable and U.S. Food and Drug Administration-approved medication, inhibited CaMKII in cultured cardiomyocytes and in mice. Ruxolitinib abolished arrhythmogenesis in mouse and patient-derived models of CaMKII-driven arrhythmias. A 10-min pretreatment in vivo was sufficient to prevent catecholaminergic polymorphic ventricular tachycardia, a congenital source of pediatric cardiac arrest, and rescue atrial fibrillation, the most common clinical arrhythmia. At cardioprotective doses, ruxolitinib-treated mice did not show any adverse effects in established cognitive assays. Our results support further clinical investigation of ruxolitinib as a potential treatment for cardiac indications.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Cardiopatías , Animales , Niño , Humanos , Ratones , Arritmias Cardíacas , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Pirazoles/farmacología
20.
Circ Res ; 133(1): e1-e16, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37154033

RESUMEN

BACKGROUND: Atrial fibrillation (AF), the most common arrhythmia, is associated with the downregulation of FKBP5 (encoding FKBP5 [FK506 binding protein 5]). However, the function of FKBP5 in the heart remains unknown. Here, we elucidate the consequences of cardiomyocyte-restricted loss of FKBP5 on cardiac function and AF development and study the underlying mechanisms. METHODS: Right atrial samples from patients with AF were used to assess the protein levels of FKBP5. A cardiomyocyte-specific FKBP5 knockdown mouse model was established by crossbreeding Fkbp5flox/flox mice with Myh6MerCreMer/+ mice. Cardiac function and AF inducibility were assessed by echocardiography and programmed intracardiac stimulation. Histology, optical mapping, cellular electrophysiology, and biochemistry were employed to elucidate the proarrhythmic mechanisms due to loss of cardiomyocyte FKBP5. RESULTS: FKBP5 protein levels were lower in the atrial lysates of patients with paroxysmal AF or long-lasting persistent (chronic) AF. Cardiomyocyte-specific knockdown mice exhibited increased AF inducibility and duration compared with control mice. Enhanced AF susceptibility in cardiomyocyte-specific knockdown mice was associated with the development of action potential alternans and spontaneous Ca2+ waves, and increased protein levels and activity of the NCX1 (Na+/Ca2+-exchanger 1), mimicking the cellular phenotype of chronic AF patients. FKBP5-deficiency enhanced transcription of Slc8a1 (encoding NCX1) via transcription factor hypoxia-inducible factor 1α. In vitro studies revealed that FKBP5 negatively modulated the protein levels of hypoxia-inducible factor 1α by competitively interacting with heat-shock protein 90. Injections of the heat-shock protein 90 inhibitor 17-AAG normalized protein levels of hypoxia-inducible factor 1α and NCX1 and reduced AF susceptibility in cardiomyocyte-specific knockdown mice. Furthermore, the atrial cardiomyocyte-selective knockdown of FKBP5 was sufficient to enhance AF arrhythmogenesis. CONCLUSIONS: This is the first study to demonstrate a role for the FKBP5-deficiency in atrial arrhythmogenesis and to establish FKBP5 as a negative regulator of hypoxia-inducible factor 1α in cardiomyocytes. Our results identify a potential molecular mechanism for the proarrhythmic NCX1 upregulation in chronic AF patients.


Asunto(s)
Fibrilación Atrial , Ratones , Animales , Fibrilación Atrial/metabolismo , Regulación hacia Abajo , Miocitos Cardíacos/metabolismo , Hipoxia/metabolismo , Proteínas de Choque Térmico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...